Fizyka 
 
Fale Wodne
VStAF
Wytwórz falę wodną przez pionowe ruchy poziomego cylindra. W czasie zmian częstotliwości i/lub amplitudy tych drgań woda wydaje się płynąć w kierunku od lub do cylindra. Zbadaj to zjawisko.

1. Wstęp teoretyczny:
Fala mechaniczna, będąca przykładem ruchu drgającego, to rozchodzące się drgania ośrodka sprężystego, przenoszące energię od źródła fali do kolejnych punktów ośrodka. Fale na wodzie, które badamy, to fale poprzeczne. Przy opisywaniu tego ruchu, będziemy posługiwać się pojęciami takimi jak: amplituda-A [m] (maksymalne wychylenie z położenia równowagi), okres-T [s] (czas jednego pełnego drgnięcia, częstotliwość-f [Hz] (liczba drgań w czasie jednej sekundy), długość fali - lambda [m] (droga jaką przebywa czoło fali w czasie jednego pełnego drgnięcia), prędkość fali- V [m/s] i głębokość zanurzenia cylindra [cm].

Jednym ze zjawisk, które posłużyło nam jako podstawa do stworzenia odpowiedniego planowania doświadczeń jest zjawisko dryftu Stokesa. Dryft Stokesa, to ruch cząsteczek wody (cieczy) obserwowany w ruchu falowym, powodowany na przykład przez zmniejszenie amplitudy (eliptycznych) trajektorii cząstek w wodzie wraz z głębokością. Różnica pomiędzy horyzontalną amplitudą ruchu, a głębokością powoduje, że cząstki na powierzchni wody poruszają się nieco bardziej w kierunku przemieszczającej się fali niż w kierunku przeciwnym. Powoduje to dryft, nazywany dryftem Stokesa (Wikipedia Wolna Encyklopedia, 2014).

Drugim zjawiskiem, które pomaga lepiej zrozumieć nasze doświadczenie, są fale Faradaya. Fale Faradaya, to nieliniowe fale stojące, pojawiające się na powierzchni cieczy zamkniętej w wibrującym pojemniku. Kiedy częstotliwość tych wibracji osiąga wartość krytyczną, płaska powierzchnia cieczy zaczyna być niestabilna. Ten rodzaj fal widzimy na co dzień; jeśli delikatnie stukniemy np. kieliszek z wodą, możemy zaobserwować subtelne paski rozchodzące się po powierzchni cieczy. Poprzez zmiany częstotliwości drgań wzbudzających możemy zmieniać charakterystykę powstających fal (Wikipedia Wolna Encyklopedia, 2015).

Rys. 1: (po lewej) Dryft Stokesa (tu: długość fali jest znacznie większa niż głębokość wody)

Należy wspomnieć, że przy falach Faradaya mamy do czynienia z pewnymi zaburzeniami; ruch płynu jest złożony, co jest związane z turbulencją 2D. Przy falach Faradaya może zostać również wygenerowana wirowość w przepływie poziomym. Interakcje tych wirów wyjaśniają, jak turbulencja 2D jest napędzana przez fale prawie stojące. Za źródło turbulencji w tym ruchu falowym należy uznać turbulencję 2D Naviera- Stokesa (N. Francois, H. Xia, H. Punzmann, S. Ramsden, M. Shats, 2014)

Podsumowując, ruch pływaków podczas generowania fal Faradaya jest trójwymiarowy , ale jego poziome wahania prędkości pokazują nieoczekiwane podobieństwa z turbulencji dwuwymiarowej. Obserwuje się to w głębokiej wodzie, w szerokim zakresie długości fal (N. Francois, H. Xia, H. Punzmann, M. Shats, 2013).

Do stworzenia układu badawczego zainspirował nas film, który ukazuje jak naukowcy z Australia National University zrealizowali „tractor beam”. Cylindrem o małej średnicy, zamocowanym na ramieniu pracującym, napę-dzanym przez silnik, poruszali w taki sposób, że kulka ping-pongowa znajdująca się na powierzchni wody poruszała się w różnych kierunkach. Należy również zwrócić uwagę na to, co zostało pokazane w dodatkowych materiałach filmowych, udostępnionych przez naukowców z ANU: badacze wykresami, filmami oraz metodą wizualizacji 3D ukazują, że dla fal liniowych ruch wody występuje w kierunku zewnętrznym od cylindra (tą sytuację można odnieść do charakterystyki dryftu Stokesa), a dla fal nieliniowych w kierunku do cylindra (tą sytuację można z kolei odnieść do charakterystyki fal Faradaya). Okazało się, że powyżej pewnej wysokości , te złożone trójwymiarowe fale generują modele przepływu na powierzchni wody. Tractor beam jest jedynie jednym ze wzorów; mogą być przepływy do we-wnątrz, do zewnątrz i wiry (M. Shats, 2014). Naukowcy sprawdzali też jak sam kształt cylindra wpływa na ruch wody (my zmienialiśmy wymiary cylindra aby również móc zaobserwować różnice). Dr. Punzmann powiedział, że jak na razie, żadna matematyczna teoria nie tłumaczy tego zjawiska”, dlatego w naszym raporcie nie będziemy prowadzić obliczeń.

2. Planowania doświadczeń
Pytanie badawcze: Od czego zależy kierunek płynięcia pływaków unoszących się na powierzchni wody w akwarium, w którym są generowane pionowe ruchy poziomego cylindra?

Hipoteza A: Kierunek płynięcia pływaków w akwarium może zmieniać się wraz ze zmianą amplitudy pionowych drgań poziomego cylindra.

Rys. 2: Tractor beam naukowców z ANU

Zmienne:

  • Niezależne: Amplituda drgań cylindra ( 2 cm, 4 cm, 6 cm, 8 cm)
  • Zależna: Kierunek płynięcia pływaków (zostają w miejscu/płyną od cylindra/płyną do cylindra)
  • Kontrolowane: Dopilnujemy, aby pojemnik, gąbki i ich umiejscowienie, konstrukcja ‘torowa’ w pojemniku, ilość roztworu w pojemniku, rodzaj wody i mleka w pojemniku, rodzaj pływaków, ilość pływaków, użyta wkrętarka i doczepiona do niej metalowa płytka, cylindry, miejsce wykonywania doświadczenia i naświetlenie przy wyko-nywaniu doświadczenia, a także aparat którym będziemy nagrywać doświadczenie był zawsze ten sam. Dla ba-dania wpływu samej amplitudy będziemy utrzymywać stałą częstotliwość drgań (3 Hz), głębokość zanurzenia cy-lindra (1 cm od dna) i rozmiar cylindra (mniejszy).

Hipoteza B: Kierunek pływów wody w pojemniku zależy od zmian częstotliwości pionowych drgań poziomego cylindra.

Zmienne:

  • Niezależna: Częstotliwość drgań cylindra (1 Hz, 2 Hz, 3 Hz, 4 Hz)
  • Zależna: Kierunek płynięcia pływaków (zostają w miejscu/płyną od cylindra/płyną do cylindra)
  • Kontrolowane: Takie same jak dla hipotezy A oraz (dla badania samej częstotliwości) stała amplituda drgań (4 cm), rozmiar cylindra (mniejszy) i głębokość zanurzenia cylindra (3 cm od dna).

Hipoteza C: Kierunek pływów wody w pojemniku zależy od zmian głębokości zanurzenia poziomego cylindra przy jego pionowych drganiach.

Zmienne:

  • Niezależna: Głębokość zanurzenia cylindra (dla większego cylindra: 1, 2, 3, dla mniejszego cylindra: 2, 3, 4 [cm od dna])
  • Zależna: Kierunek płynięcia pływaków (zostają w miejscu/płyną od cylindra/płyną do cylindra)
  • Kontrolowane: Takie same jak dla hipotezy A oraz (dla badania samej głębokości) stała amplituda drgań cylindra (4 cm), wielkość cylindra (mniejszy) i częstotliwość drgań cylindra (3 Hz).

Hipoteza D: Kierunek pływów wody w pojemniku zależy od zmian średnicy podstawy (wielkości) używanego w doświadczeniu cylindra.

Zmienne:

  • Niezależna: Średnica podstawy cylindrów (2 cm, 4 cm)
  • Zależna: Kierunek płynięcia pływaków (zostają w miejscu/płyną od cylindra/płyną do cylindra)
  • Kontrolowane: Takie same jak dla hipotezy A oraz (dla badania samego wpływu wielkości cylindra) stała ampli-tuda drgań (4 cm), częstotliwość drgań cylindra (3 Hz) i odległość od dna (3 cm).

uMateriały dla hipotez A, B, C i D:

  • dwie świece o średnicy 2 i 4 [cm];
  • dwie duże gąbki kąpielowe;
  • 5 plastikowych słomek do picia;
  • opakowanie ziarenek pieprzu (pływaki, które pozwolą nam scharakteryzować ruch wody);
  • dwie metalowe blaszki o wymiarach 2,5x13,3 [cm];
  • pistolet z klejem na gorąco;
  • szklane akwarium o wymiarach 69,2x14,4x8,3 [cm];
  • wkrętarka elektryczna 14,4 V (0-700 obrotów na minutę);
  • metalowa blaszka (ramię) o wymiarach 4x16 [cm] z otworami;
  • metalowa śruba z nakrętkami do zamocowania ramienia;
  • dwa metalowe, możliwe do zgięcia ale usztywnione druty (np. z osłonką);
  • woda kranowa (do akwarium o pojemności ok. 8,27 litra, wlaliśmy ok. 6,5 litra);
  • mleko ( ok. 0,5 litra);
  • telefon z kamerą;
  • nóż;

Metoda dla hipotez A, B, C i D:

  1. Metalowe płytki przycięliśmy do wymiarów 2,5x13,3 [cm], tak aby były sobie równe i mieściły się w akwarium.
  2. Cztery słomki do picia przycięliśmy tak, aby były równe długości metalowych płytek i przyłożyliśmy po dwie słomki do każdej z płytek.
  3. Między pary słomek wsunęliśmy jeszcze jedną słomkę tak, aby wszystkie trzy przylegały do siebie i przykleili-śmy dwie skrajne rurki do płytek klejem na gorąco.
  4. Oczyściliśmy akwarium i przykleiliśmy płytki do jego ścianek (Ryc. 9.5).
  5. Przycięliśmy obydwie świece tak, aby mieściły się między płytkami ze słomkami.
  6. Zrobiliśmy dziury na środku podstaw świec, tak aby można były wsadzić w nie kawałki słomek (średnica dziur była równa średnicy słomki).
  7. Wsadziliśmy do wszystkich czterech podstaw kawałki słomek tak, aby cylindry mogły swobodnie poruszać się w górę i w dół po zrobionych kilka punktów wcześniej ‘szynach’.
  8. Po obydwu krańcach akwarium umieściliśmy w poprzek gąbki, tak aby dobrze się trzymały (Ryc. 9.4).
  9. Do blaszki z dziurkami przykręciliśmy mocno śrubę i umocowaliśmy ją we wkrętarce (Ryc. 9.6).
  10. Przez obydwa cylindry przeciągnęliśmy usztywniony drut i zamocowaliśmy go.
  11. Do akwarium nalaliśmy ok. 6,5 litra wody i 0,5 litra mleka.
  12. Do akwarium wsypaliśmy tyle ziaren pieprzu, aby na powierzchni pozostało ich około 30.
  13. Wzięliśmy cylinder o większej średnicy (4 cm) i zaczepiliśmy go w jednej z dziur w blaszce (Ryc. 9.3).
  14. Manipulowaliśmy wielkościami, których zakresy są opisane w punktach A, B i C, tworząc ich wszelkie możliwe konfiguracje. Za każdym razem przez minutę nagrywaliśmy od góry powierzchnię płynu, na którym unosiły się pływaki i notowaliśmy swoje obserwacje.
  15. Powtórzyliśmy punkty 13 i 14 dla cylindra o mniejszej średnicy podstawy (2 cm).
  16. Oglądnęliśmy nagrane przez siebie filmiki i zapisane obserwacje, i wyciągnęliśmy wnioski, które pozwoliły nam potwierdzić, bądź obalić hipotezy i poznać odpowiedź na pytanie badawcze.

Rys 3.

3. Analiza doświadczeń:

Na bardzo licznych, nagranych przez nas filmikach obserwowaliśmy zachowanie wody, przy różnych zmianach wielkości fizycznych opisujących fale.

Wyniki, obserwacje i ich analiza zostały umieszczone w tabeli, w której zapisaliśmy najbardziej skrajne i istotne dla doświadczenia konfiguracje wielkości fizycznych, którymi manipulowaliśmy przy nagraniach.

Cylinder I (większy, średnica podstawy 4 cm):

WIELKOŚCI WARTOŚCI FIZYCZNYCH OBSERWACJE
Mała częstotliwość drgań cylindra (1 Hz) + mała amplituda drgań cylindra (2 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Pływaki znajdujące się bliżej krańców naczynia tam pozostają, a te nieliczne znajdujące się bliżej cylindra chaotycznie, ale wolno dryfują w jego kierunku (ok. 1cm/sek.). Trudno jest scharakteryzować ich ruch, a co za tym idzie ruch wody w akwarium.
Mała częstotliwość drgań cylindra (1 Hz) + duża amplituda drgań cylindra (8 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Pływaki zostają w miejscu, nie płyną ani od ani do cylindra. Ich ruch jest bardzo mały i słabo widoczny. Jedynie niektóre z nich zataczają małe, chao-tyczne kółka w niewielkim obszarze, otaczającym punkt, w którym początkowo się znajdowały
Duża częstotliwość drgań cylindra (4 Hz) + mała amplituda drgań cylindra (2 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Pływaki bardzo szybko (z prędkością ok. 2,5 cm/ sek.) odpłynęły w kierunku od cylindra (w kierunku krańców akwarium). Niektóre z nich po chwili za-częły wracać, co wynika jednak jedynie z niedoskonałości ‘amortyzacji’ fal odbitych, którą miały zapewnić umieszczone na krańcach akwarium gąbki.
Duża częstotliwość drgań cylindra (4 Hz) + duża amplituda drgań cylindra (8 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Pływaki bardzo, bardzo szybko (ok. 5,2 cm/sek.) oddalają się od cylindra i docierają do krańców naczynia, gdzie później wciąż pozostają. Część z nich ‘wchodzi’ nawet na gąbki.
Mała częstotliwość drgań cylindra (1 Hz) + duża amplituda drgań cylindra (8 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Tylko niektóre pływaki oddalają się w kierunku krańców akwarium, reszta zostaje w miejscu (oddalanie się, dzieje się bardzo wolno, bo z prędkością około 0,25 cm/ sek.).
Mała częstotliwość drgań cylindra (1 Hz) + mała amplituda drgań cylindra (2 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Ruch pływaków jest niemal niewidoczny; prawie w ogóle się nie poruszają, można powiedzieć, że stoją w miejscu.
Duża częstotliwość drgań cylindra (4 Hz) + duża amplituda drgań cylindra (8 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Pływaki szybko (ok. 2,2-2,3 cm/sek.) odpływają w kierunku od cylindra (w kierunku krańców cylindra) i nie wracają, z czego można wywnioskować, że fale wytwarzane stale przez cylinder, są silniejsze od fal odbitych, przez co fale odbite zostają stłumione.
Duża częstotliwość drgań cylindra (4 Hz) + mała amplituda drgań cylindra Pływaki szybko odpłynęły w kierunku od cylindra (w kierunku krańców akwarium), z prędkością około 2 cm/sek. Niektóre z nich po chwili (średnio (2 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) po około 6 sek.) zaczęły wracać, co wynika jednak jedynie z niedoskonałości ‘amortyzacji’ fal obitych, którą miały zapewnić umieszczone na krańcach akwarium gąbki.

Cylinder II (mniejszy, średnica podstawy 2 cm):

WIELKOŚCI WARTOŚCI FIZYCZNYCH OBSERWACJE
Mała częstotliwość drgań cylindra (1 Hz) + mała amplituda drgań cylindra (2 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Nie można zaobserwować żadnych szczególnych zmian w ruchu ziarenek pieprzu znajdujących się na powierzchni roztworu. Pozostają w miejscu, najbardziej stabilnie spośród wszystkich zbadanych przez nas konfiguracji wielkości wartości fizycznych.
Mała częstotliwość drgań cylindra (1 Hz) + duża amplituda drgań cylindra (8 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Ziarenka pieprzu powolnie (ok.1 cm/sek.) odpływają od cylindra i podpły-wają pod boczne ścianki, gdzie większość z nich pozostaje, spokojnie dry-fując w małych grupach w różnej odległości od cylindra.
Duża częstotliwość drgań cylindra (4 Hz) + mała amplituda drgań cylindra (2 cm) + duża głębokość zanurzenia cylindra (1 cm od dna) Wszystkie pływaki bardzo szybko płyną do cylindra (ok. 3 cm/sek.), czyli w kierunku do środka naczynia.
Duża częstotliwość drgań cylindra (4 Hz)+ duża amplituda drgań cylindra (8 cm) + duża głębokość zanurzenia cylindra (1 cm) Większość ziaren w różnym tempie odpływa od cylindra w kierunku krań-ców akwarium i pozostaje do nich stosunkowo blisko ( do kilkunastu cen-tymetrów), jedynie kilka z nich pozostaje blisko cylindra i chaotycznie wo-kół niego krąży.
Mała częstotliwość drgań cylindra (1 Hz) + duża amplituda drgań cylindra (8 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Ziarenka pieprzu odpływają ok. 10 cm od cylindra i podpływają pod boczne ścianki, gdzie większość z nich pozostaje, spokojnie dryfując w małych grupach blisko krańców akwarium.
Mała częstotliwość drgań cylindra (1 Hz) + mała amplituda drgań cylindra (2 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Większość pływaków nieco odpływa od cylindra (o ok. 10 cm) i zostaje w miejscu, ich ruch jest znikomy. Jedynie niektóre z nich znajdujące się bliżej cylindra wolno poruszają się najpierw w kierunku do, a później od cylindra, na średniej wielkości obszarach (ok. 10x10 [cm]) i dopiero wtedy ‘ustatkowują’ się i dryfują w miejscu.
Duża częstotliwość drgań cylindra (4 Hz) + duża amplituda drgań cylindra (8 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Pływaki szybko (ok. 4,6 cm/ sek.) oddalają się od cylindra pod krańcowe ścianki akwarium, gdzie pozostają w miejscu; wykonują jedynie bardzo małe, ale nieco chaotyczne ruchy zgodnie z ruchem fal. Mała część ziarenek odpływa pod boczne ściany naczynia.
Duża częstotliwość drgań cylindra (4 Hz) + mała amplituda drgań cylindra (2 cm) + mała głębokość zanurzenia cylindra (3 cm od dna) Ziarenka odpływają kawałek od cylindra (ok. 15- 17 cm) i rozproszone unoszą się na dwóch obszarach od ¼ długości naczynia z każdej strony, blisko krańców akwarium . Pozostają na tym samym obszarze, nieco chao-tycznie dryfując.

4. Wnioski:
Jedynie przy cylindrze o mniejszej średnicy udało się nam tak naprawdę uzyskać widoczny efekt ziarenek pie-przu płynących do cylindra, co zdecydowanie potwierdza hipotezę D (została wtedy zastosowana duża częstotliwość, mała amplituda i duża głębokość zanurzenia cylindra). Co za tym idzie, duży wpływ na kierunek płynięcia pływaków ma również głębokość zanurzenia cylindra; jedynie przy dużej głębokości udało nam się osiągnąć efekt ziarenek pły-nących w kierunku do cylindra. Przy małej głębokości zanurzenia ziarenka z reguły definitywnie oddalały się do ze-wnętrznych krańców akwarium, a przy dużej głębokości np. w przypadku cylindra II pozostawały w miejscu, albo nieznacznie się oddalały. Jeśli zaś chodzi o częstotliwość, to przy dużej częstotliwości ruch ziarenek był bardziej chaotyczny, z reguły większość z nich odpływała a kilka agresywnie dryfowała blisko cylindra (z jednym wyjątkiem, kiedy udało się sprawić, aby pływaki płynęły do cylindra). Przy małej częstotliwości, ziarenka z reguły odpływały, albo pozostawały w miejscu, w obydwu przypadkach spokojnie dryfując. Jeśli chodzi o amplitudę, to często przy du-żej amplitudzie ziarenka odpływały od cylindra, a przy małej pozostawały w miejscu albo płynęły do cylindra (chyba, że mieliśmy do czynienia z dużą częstotliwością).

5. Wnioski końcowe:
Wszystkie zmienne niezależne, opisane w planowaniach A, B, C i D mają znaczenie dla kierunku płynięcia pływaków. Kierunek płynięcia od cylindra był najlepiej widoczny dla dużej częstotliwości, dużej amplitudy i dużej głębokości zanurzenia cylindra. Kierunek płynięcia do cylindra był najlepiej widoczny przy dużej częstotliwości, ma-łej amplitudzie i dużej głębokości zanurzenia cylindra. W miejscu pływaki pozostawały przy małej częstotliwości, małej amplitudzie i dużej głębokości zanurzenia. Miała też znaczenie średnica podstawy używanego cylindra; najle-piej można było zaobserwować kierunek płynięcia do cylindra dla mniejszego z nich, a kierunek od cylindra dla więk-szego. Można zatem stwierdzić, iż największy wpływ na charakterystykę ruchu fal w akwarium miały: amplituda drgań cylindra, częstotliwość drgań cylindra i geometria cylindra. Należy również zaznaczyć, że jeśli chodzi o pieprz płynący od/do cylindra, to bardzo duże znaczenie miała tu różnica w amplitudzie; duża= od (fala liniowa), mała=do (fala nieliniowa). Jeśli zaś chodzi o częstotliwość, to musiała być duża zarówno aby ziarenka płynęły od jak i do cy-lindra, ale mała aby pozostawały w miejscu.

6. Ewaluacja:
Możemy przypuszczać, że wyniki przeprowadzonego przez nas doświadczenia są wiarygodne, ponieważ można z nich wyciągnąć klarowne wnioski, zgodne z potwierdzoną źródłami częścią teoretyczną, opisaną na wstępie naszego raportu. Jest jednak kilka rzeczy, które moglibyśmy udoskonalić. Następnym razem przy wykonywaniu doświadcze-nia, powinniśmy dopilnować, aby naświetlenie pozostawało takie samo zgodnie z zamierzeniami. Powinniśmy rów-nież umieścić w krańcach naczynia większe gąbki aby lepiej tłumiły fale odbite i bardziej sprawnie manipulować głę-bokością zanurzenia cylindra (było to trudne, bo nasz silnik stanowiła wkrętarka, którą być może następnym razem powinniśmy zamienić o silnik o tej samej mocy, ale łatwiejszy do sterowania).

7. Zdjęcia, robione podczas wykonywania doświadczenia:

Rys 4: Ziarna płyną w kierunku od cylindra; Ziarna pozostają w miejscu; Ziarna płyną w kierunku do cylindra

8. Bibliografia:
Informacje:
  • http://kit.ilyam.org/Draft_2016_IYPT_Reference_kit.pdf
  • https://pl.wikipedia.org/wiki/Fala_Faradaya
  • https://pl.wikipedia.org/wiki/Dryft_Stokesa
  • https://pl.wikipedia.org/wiki/R%C3%B3wnania_Eulera-Lagrange%E2%80%99a
Grafika:
  • https://www.youtube.com/watch?v=ZUYCkHWgVss
  • https://pl.wikipedia.org/wiki/Dryft_Stokesa#/media/File: Shallow_water_wave_after_three_wave_periods.gif
 
Opinie
 
Facebook
 
  
26836 wyświetleń

numer 12/2016
2016-12-01

Od redakcji
Aktualności
Chemia
Dla młodszych
Fizyka
Geografia
Literatura
Polityka
Psychologia
Rozmaitości
Socjologia

nowyOlimp.net na Twitterze

nowy Olimp - internetowe czasopismo naukowe dla młodzieży.
Kolegium redakcyjne: gaja@nowyolimp.net; hefajstos@nowyolimp.net